Critical Point and Onset of Deconfinement (CPOD)
23 - 29 August 2010 at Joint Institute for Nuclear Research

Status of NICA Project
I. Meshkov for NICA Project Group

JINR, Dubna
Introduction: NICA project goals

1. Facility scheme and operation scenario

2. NICA Collider
 2.1. Layout
 2.2. Peak luminosity
 2.3. Luminosity preservation

3. Status and plan of NICA project development
 3.1. Heavy Ion Source KRION-6T
 3.2. Heavy Ion Linac
 3.3. Booster
 3.4. Nuclotron
 3.5. Collider
 3.6. Infrastructure development
 3.7. NICA construction schedule

Conclusion
Introduction: The NICA Project Goals

L.McLerran, 15 July 2010, JINR Seminar

CPOD’2010, August 2010
Introduction: The NICA Project Goals

The goal of the project is construction at JINR of a new accelerator facility that provides

1a) Heavy ion colliding beams $^{197}\text{Au}^{79+} \times ^{197}\text{Au}^{79+}$ at

$$\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} \ (1 \div 4.5 \text{ GeV/u ion kinetic energy})$$

at $L_{\text{average}} = 1E27 \text{ cm}^{-2}.\text{s}^{-1}$ (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

1b) Light-Heavy ion colliding beams of the same energy range and luminosity

2) Polarized beams of protons and deuterons in collider mode:

$$p^\uparrow p^\uparrow \sqrt{s_{pp}} = 12 \div 27 \text{ GeV} \ (5 \div 12.6 \text{ GeV kinetic energy})$$

$$d^\uparrow d^\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} \ (2 \div 5.9 \text{ GeV/u ion kinetic energy})$$

$$L_{\text{average}} \geq 1E30 \text{ cm}^{-2}.\text{s}^{-1} \ (at \ \sqrt{s_{pp}} = 27 \text{ GeV})$$

3) The beams of light ions and polarized protons and deuterons for fixed target experiments:

$$\text{Li} \div \text{Au} = 1 \div 4.5 \text{ GeV/u ion kinetic energy}$$

$$p, \ p^\uparrow = 5 \div 12.6 \text{ GeV kinetic energy}$$

$$d, \ d^\uparrow = 2 \div 5.9 \text{ GeV/u ion kinetic energy}$$

4) Applied research on ion beams at kinetic energy from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)
Heavy Ion Mode: Operation Regime and Parameters

Collider (45 Tm)
Storage of 26 bunches by ~1x10^9 ions per ring at 1 - 4.5 GeV/u, electron and/or stochastic cooling

Injector: 2x10^9 ions/pulse of ^{197}Au^{32+} at energy of 6.2 MeV/u

Booster (25 Tm)
1(2-3) single-turn injection, storage of 2·(4-6)x10^9, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u

Nuclotron (45 Tm)
injection of one bunch of 1.1x10^9 ions, acceleration up to 1 - 4.5 GeV/u max.

Stripping (80%) ^{197}Au^{32+} => ^{197}Au^{79+}

I.Meshkov, Status of NICA project CPOD’2010 August 27, 2010 Dubna
2. NICA Collider
2.1. Layout

Three versions of the NICA Collider Layout

Colider 2T- 534
($C_{\text{Ring}} = 534 \text{ m}$)
July 2010
2. NICA Collider (Contnd)

2.1. Layout (Contnd)

Collider 2T- 534

Advantages of such a large circumference:

1. Sufficient space for lattice elements and “insertion devices” (RF cavities, inflectors, electron and stochastic coolers, spin rotators, etc.) that makes possible to construct such a multifunctional collider;

2. Continuation of existing fixed target experiments and independent construction of new ones (including test lines for MPD and SPD elements).

Disadvantages:

1. Probable reduction of luminosity (?);
2. Facility cost increase.
2. NICA Collider (Contnd)

2.1. Layout (Contnd)

Collider 2T- 534

The scheme of elements location
2. NICA Collider (Contnd)

2.2. Peak Luminosity

The main limitation of the collider luminosity are the beams space charge effects, which can be described by the following:

1. The Laslett tune shift:

\[\Delta Q = \frac{Z^2}{A} \cdot \frac{r_p N_i}{\beta^2 \gamma^3 4 \pi \varepsilon_{\sigma}} \cdot k_{\text{bunch}}, \quad k_{\text{bunch}} = \frac{C_{\text{Ring}}}{\sqrt{2 \pi} \cdot \sigma_s}. \]

2. The beam-beam parameter:

\[\xi = \frac{Z^2}{A} \cdot \frac{r_p N_b (1 + \beta^2)}{4 \pi \beta^2 \gamma \varepsilon}. \]

More essential is the first one. If \(\Delta Q = \text{Const} \) with energy then luminosity is scaled with energy as \(L \propto \beta^5 \gamma^6 \varepsilon_{\text{geom}} = \beta^4 \gamma^5 \varepsilon_{\text{norm}} \):

\[L = 8 \pi^2 \beta^5 \gamma^6 \Delta Q^2 \frac{A^2 \varepsilon_{\text{geom}}}{Z^4} \cdot \left(\frac{\sigma_s}{C_{\text{Ring}}} \right)^2 \cdot \frac{\text{cn}_{\text{bunch}}}{C_{\text{Ring}}}, \]

where \(\sigma_s \) is the bunch length, \(f_{HG} \) – “the hour-glass” factor.

The ratio \(C_{\text{Ring}}/n_{\text{bunch}} = I_{\text{interbunch}} = \text{Const} \) because it is limited by design of the collider lattice (a necessity to avoid “parasitic” bunch-bunch collisions in straight section). Thus

\[L(E) \propto \left(\frac{\sigma_s}{C_{\text{Ring}}} \right)^2 / \beta^3 \]
2. NICA Collider (Contnd)

2.2. Peak Luminosity (Contnd)

The reduction of peak luminosity with collider circumference enlargement can be compensated by a proper choice of the beam and lattice parameters:

\[L(E) \propto \frac{(\sigma_s / C_{\text{Ring}})^2}{\beta^*} \]

\(C_{\text{Ring}}, \text{ m} \)	251	534
\(\sigma_s, \text{ m} \)	0.3	0.6
\(\beta^*, \text{ m} \)	0.5	0.35
\(\frac{L_{534}}{L_{251}} \)	0.86	
2. NICA Collider (Contnd) 2.2. Peak Luminosity (Contnd)

Luminosity scaling with energy

When ΔQ is fixed the peak luminosity is scaled with energy as the following (two outmost cases):

1. $L_1(E) = \text{Const} \cdot \beta^5 \cdot \gamma^6$ if unnormalized ("geometrical") emittance is constant;

2. $L_2(E) = \text{Const} \cdot \beta^4 \cdot \gamma^5$ if normalized emittance is constant.

Here $\beta(E)$ and $\gamma(E)$ are Lorenz factors.

Luminosity scaling for collider 2T-534

$L(4.5 \text{ GeV/u}) = 6E27 \text{ cm}^{-2} \cdot \text{s}^{-1}$

$L(3.5 \text{ GeV/u}) = (1.7 \div 2.1)E27$

$L(1 \text{ GeV/u}) = (0.7 \div 2.1)E25$
2. NICA Collider (Contnd)

2.3. Luminosity preservation

Beam life time defined by IBS

If ΔQ is fixed as before then beam life time by IBS is proportional to

$$\tau_{IBS} \propto \frac{A}{Z^2} \cdot \frac{\beta^2 \gamma^2 \varepsilon_{geom} \cdot (\Delta p / p) \cdot \sigma_s}{\Delta Q} \cdot f(\sigma_x, \sigma_y, \sigma_z, \text{lattice functions})$$

Collider 2T - 534

τ_{IBS} and τ_{cool} ($I_e = 1$ A) vs ion energy

How to resolve the problem?

\Rightarrow Smooth lattice functions to increase τ_{IBS}
(S.Kostromin, JINR & V.Lebedev, FNAL)

\Rightarrow Stochastic cooling at
2.5 GeV/u < E < 4.5 GeV/u
(T.Katayama, G.Trubnikov, N.Shurkhno);

\Rightarrow Electron cooling at
1.0 GeV/u < E < 2.5 GeV/u.
3. Status and plan of NICA elements development

3.1. Heavy Ion Source KRION-6T

(E.D.Donets, E.E.Donets)

Status: Construction of working prototype

Assembled vacuum and cryogenic vessels of the KRION-6T

[Diagram of the KRION-6T foreinjector scheme]

[Image of the assembled vacuum and cryogenic vessels]

[Image of the automatic tool for solenoid spooling]
3. Status and plan of NICA elements development (Contnd)

3.1. Heavy Ion Source KRION-6T (Contnd)

(E.D.Donets, E.E.Donets)

What is KRION?
Electron Beam Ion Source (EBIS) and its modification Electron String Ion Source (ESIS) ⇒ KRION source (Cryogenic Ion Source)

Why 6 T ?

\[Q(B) = C \cdot B^3 \]
3. Status and plan of NICA elements development (Cont'd)

3.2. Heavy Ion Linac (HILAC)

HILAC – 1 section of RFQ + 4 sections of Drift Tube Linac (DTL),
2H cavities of "Ural"
RFQ (prototype)

Status: Design at IHEP (Protvino) and JINR,
Construction at VNIIEF – recent agreement.
3. Status and plan of NICA elements development (Contnd)

3.3. Booster

RF system: working design and manufacturing
(G.Kurkin and team, Budker INP, by contract)
3. Status and plan of NICA elements development (Contnd)

3.3. Booster

SC magnetic system: manufacturing of magnet prototypes (H.Khodzhibagiyan and team)

Cross section of the Booster dipole and quadrupole lens

Booster dipole yoke at assembling

The tool for assembling a curved yoke for the Booster dipoles
3. Status and plan of NICA elements development (Contnd)

3.3. Booster

Electron cooler: working design
(A. Shabunov, A. Smirnov, N. Topilin, Yu. Tumanova, S. Yakovenko)

General view of the electron cooler
Electron gun
Electron collector

SC Solenoid field simulation
(R. Pivin)
3. Status and plan of NICA elements development (Contnd)

3.3. Booster

Synchrophasotron dismantling \(\Rightarrow\) in progress

July 2010
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron

Thorough upgrade since 2007 - after 14 years running

G.Trubnikov, N.Agapov, A.Bazanov, O.Brovko, A.Butenko, A.Govorov, E.Ivanov, V.Karpinsky H.Khodzhibagiyan, V.Mikhailov, V.Monchinsky, A.Sidorin, V.Slepnev, A.Smirnov, V.Volkov
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron

(Contnd)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Project</th>
<th>Status (March 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. magn. field, T</td>
<td>2.05</td>
<td>1.8</td>
</tr>
<tr>
<td>Magn. rigidity, T·m</td>
<td>45</td>
<td>39.5</td>
</tr>
<tr>
<td>Cycle duration, s</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>B-field ramp, T/s</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Accelerated particles</td>
<td>p–U, p↑, d↑</td>
<td>p-Xe, d↑</td>
</tr>
<tr>
<td>Max. energy, GeV/u</td>
<td>12.6(p), 5.87(d) 4.5(197Au79+)</td>
<td>5.1(d), 1.0(124Xe42+)</td>
</tr>
<tr>
<td>Intensity, ions/cycle</td>
<td>1E11(p,d), 1E9 (A > 100)</td>
<td>3E10 (p,d), 1E10 (d↑), 1E6 (Xe24+)</td>
</tr>
</tbody>
</table>
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron (Contnd)

Conceptual scheme of the accelerator complex development

Polarized p^+ and d^+ beams and protons for $p \times Au$ collisions are planned to be accelerated with existing Linac LU-20.
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron (Contnd)

Injector (LU-20) modernization

- Upgrade of the power supply system for injection channel;

- Upgrade of vacuum system for fore-injector.
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron (Contnd)

- Upgrade of Nuclotron vacuum system
- Upgrade of Nuclotron beam diagnostics system
- Beam slow extraction system at maximum energy
- Upgrade of the power supplies and energy evacuation system of the SC magnets
- Upgrade of Nuclotron RF (acceleration) system
- Upgrade of the cryogenic supply system (towards NICA)
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron (Contnd)

Nuclotron-NICA

To be designed, constructed and commissioned:

1. Injection system (to accept Booster beam)
2. RF system – new version with bunch compression
3. Dedicated diagnostics
4. Single turn extraction with fine synchronization
5. Polarized protons acceleration in Nuclotron*)

*) Can be postponed

To be commissioned in 2014
3. Status and plan of NICA elements development (Contnd)

3.4. Nuclotron (Contnd)

Test experiment on stochastic cooling at Nuclotron

Collaboration JINR / FZ Jülich

Stochastic cooling system prototype at Nuclotron for HESR/NICA

Slot-coupler structure

2 ÷ 4 GHz (~10 sec)

Vacuum tank with slot-coupler (FZJ)
3. Status and plan of NICA elements development (Contnd)

3.5. Collider

SC magnetic system: manufacturing of magnet prototypes (H.Khodzhibagiyan and team)

“Twin” magnets of NICA collider:
Max. field - 2T, super-ferric (Nuclotron-like), double aperture
3. Status and plan of NICA elements development (Contnd)

3.5. Collider (Contnd)

HV Electron cooler: working design

A. Shabunov, A. Smirnov, N. Topilin, Yu. Tumanova, S. Yakovenko – JINR
A. Filippov, M. Pashin, L. Fisher – All-Russian Institute for Electrotechnique

Electron energy 0.5 ÷ 2.5 MeV
Electron beam current 0.5 ÷ 1 A
3. Status and plan of NICA elements development (Contnd)

3.5. Collider (Contnd)

- **Stochastic cooling system**: conceptual design, test experiment
 G.Trubnikov, N.Shurkhno, V.Seleznev– JINR, T.Katayama – Tokyo univ.,
 R.Stassen – FZJ, L.Thorndahl - CERN

- **RF systems (Bar. Bucket system, bunching and maintaining RF systems)**: working design and manufacturing
 A.Eliseev, JINR
 G.Kurkin and team, Budker INP, by contract
3. Status and plan of NICA elements development (Contnd)

3.6. Infrastructure Development

Building 217 (former LPP workshop)
New cryo-magnetic factory
Production, assembly, cryo- and vacuum tests for superconducting magnets serial production for NICA and FAIR (SIS-100)

30 x 75 m²
3. Status and plan of NICA elements development (Contnd)

3.7. NICA construction schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ESIS KRION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINAC + channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booster + channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclotron-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclotron-M → NICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel to collider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mount.+commis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commis/pr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Status and plan of NICA elements development (Contnd)

3.7. NICA construction schedule (Contnd)

The main tasks for the NICA project

In 2010:
- Conceptual / working design of the collider,
- Preparation of the project for the state expertise in accordance with regulations of Russian Federation (under preparation in *The State Specialized Project Institute, Moscow*),
- Construction of SC magnets prototypes.

In 2011:
- Passing through the state expertise,
- Beginning of construction of the HILAC, KRION (working version), Booster, the Collider elements,
- Stochastic cooling experiment at Nuclotron.
Conclusion

The NICA design passed the phase of concept formulation and is presently under

✓ detailed simulation of accelerator elements parameters,
✓ development of working project,
✓ manufacturing and construction of prototypes,
✓ preparation of the project for state expertise in accordance with regulations of Russian Federation.

The project realization plan foresees a staged construction and commissioning of accelerators forming the facility. The main goal is the facility commissioning in 2015.
Thank you for your attention!